wblE2 transcription factor in Streptomyces griseus S4‐7 plays an important role in plant protection

نویسندگان

  • Hyun Ji Cho
  • Young Sang Kwon
  • Da-Ran Kim
  • Gyeongjun Cho
  • Seong Won Hong
  • Dong-Won Bae
  • Youn-Sig Kwak
چکیده

Streptomyces griseus S4-7 was originally isolated from the strawberry rhizosphere as a microbial agent responsible for Fusarium wilt suppressive soils. S. griseus S4-7 shows specific and pronounced antifungal activity against Fusarium oxysporum f. sp. fragariae. In the Streptomyces genus, the whi transcription factors are regulators of sporulation, cell differentiation, septation, and secondary metabolites production. wblE2 function as a regulator has emerged as a new group in whi transcription factors. In this study, we reveal the involvement of the wblE2 transcription factor in the plant-protection by S. griseus S4-7. We generated ΔwblE, ΔwblE2, ΔwhiH, and ΔwhmD gene knock-out mutants, which showed less antifungal activity both in vitro and in planta. Among the mutants, wblE2 mutant failed to protect the strawberry against the Fusarium wilt pathogen. Transcriptome analyses revealed major differences in the regulation of phenylalanine metabolism, polyketide and siderophore biosynthesis between the S4-7 and the wblE2 mutant. The results contribute to our understanding of the role of streptomycetes wblE2 genes in a natural disease suppressing system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2).

SsgA plays an important role in the control of sporulation-specific cell division and morphogenesis of streptomycetes, and ssgA null mutants have a rare conditionally non-sporulating phenotype. In this paper we show that transcription of ssgA and of the upstream-located ssgR, an iclR-type regulatory gene, is developmentally regulated in Streptomyces coelicolor and activated towards the onset of...

متن کامل

جداسازی و تأیید مولکولی سریع استرپتومایسس های تولید کننده آنتی بیوتیک استرپتومایسین

Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this p...

متن کامل

Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus.

In Streptomyces griseus, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) switches on aerial mycelium formation and secondary metabolite biosynthesis. An A-factor-dependent transcriptional activator, AdpA, activates multiple genes required for morphological development and secondary metabolism in a programmed manner. A region upstream of a zinc-containing metalloendopeptidase gene...

متن کامل

Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus.

AdpA is the key transcriptional activator for a number of genes of various functions in the A-factor regulatory cascade in Streptomyces griseus, forming an AdpA regulon. Trypsin-like activity was detected at a late stage of growth in the wild-type strain but not in an A-factor-deficient mutant. Consistent with these observations, two trypsin genes, sprT and sprU, in S. griseus were found to be ...

متن کامل

Oxidation of Meloxicam by Streptomyces griseus

The aim of the present investigation was to biotransform the anti-inflammatory compound meloxicam by enzymes present in whole cells of five actinomycete cultures to produce novel bioactive derivatives. Among the actinomycetes screened, Streptomyces griseus NCIM 2622 was found to possess the enzyme system(s) that oxidize meloxicam into two metabolites whereas that present in S. griseus NCIM 2623...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017